Kruskal¶
O(ELogE + ELogV), E ~ O(V2), => O(LogV) = O(LogE) => O(ElogE) or O(ElogV), O(V)
telephone, electrical, hydraulic, TV cable, computer, road minimmisation of cost; (V – 1) edges
class Edge
{
public:
int src, dest, weight;
};
class Graph
{
public:
int V, E;
Edge* edge;
};
Graph* createGraph(int V, int E)
{
Graph* graph = new Graph;
graph->V = V;
graph->E = E;
graph->edge = new Edge[E];
return graph;
}
class subset
{
public:
int parent;
int rank;
};
int find(subset subsets[], int i)
{
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
void Union(subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
int myComp(const void* a, const void* b)
{
Edge* a1 = (Edge*)a;
Edge* b1 = (Edge*)b;
return a1->weight > b1->weight;
}
void KruskalMST(Graph* graph)
{
int V = graph->V;
Edge result[V];
int e = 0;
int i = 0;
qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);
subset *subsets = new subset[( V * sizeof(subset) )];
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
while (e < V - 1 && i < graph->E)
{
Edge next_edge = graph->edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
}
cout<<"Following are the edges in the constructed MST\n";
for (i = 0; i < e; ++i)
cout<<result[i].src<<" -- "<<result[i].dest<<" == "<<result[i].weight<<endl;
return;
}